Sparse dynamics for partial differential equations
نویسندگان
چکیده
منابع مشابه
Sparse dynamics for partial differential equations.
We investigate the approximate dynamics of several differential equations when the solutions are restricted to a sparse subset of a given basis. The restriction is enforced at every time step by simply applying soft thresholding to the coefficients of the basis approximation. By reducing or compressing the information needed to represent the solution at every step, only the essential dynamics a...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Solving partial differential equations via sparse SDP
To solve a partial differential equation (PDE) numerically, we formulate it as a polynomial optimization problem (POP) by discretizing it via a finite difference approximation. The resulting POP satisfies a structured sparsity, which we can exploit to apply the sparse SDP relaxation of Waki, Kim, Kojima and Muramatsu [20] to the POP to obtain a roughly approximate solution of the PDE. To comput...
متن کاملSparse Approximate Solution of Partial Differential Equations∗
A new concept is introduced for the adaptive finite element discretization of partial differential equations that have a sparsely representable solution. Motivated by recent work on compressed sensing, a recursive mesh refinement procedure is presented that uses linear programming to find a good approximation to the sparse solution on a given refinement level. Then only those parts of the mesh ...
متن کاملSparse Grids: Recent Developments For Elliptic Partial Differential Equations
Efficient discretization techniques are of crucial importance for most types of problems in numerical mathematics, starting from tasks like how to define sets of points to approximate, interpolate, or integrate certain classes of functions as good as possible, up to the numerical solution of differential equations. Introduced by Zenger in 1990 and based on hierarchical tensor product approximat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the National Academy of Sciences
سال: 2013
ISSN: 0027-8424,1091-6490
DOI: 10.1073/pnas.1302752110